首页> 外文OA文献 >Stochastic variational inequalities : residual minimization smoothing sample average approximations
【2h】

Stochastic variational inequalities : residual minimization smoothing sample average approximations

机译:随机变分不等式:残差最小化平滑样本平均近似

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The stochastic variational inequality (VI) has been used widely in engineering and economics as an effective mathematical model for a number of equilibrium problems involving uncertain data. This paper presents a new expected residual minimization (ERM) formulation for a class of stochastic VI. The objective of the ERM-formulation is Lipschitz continuous and semismooth which helps us guarantee the existence of a solution and convergence of approximation methods. We propose a globally convergent (a.s.) smoothing sample average approximation (SSAA) method to minimize the residual function; this minimization problem is convex for the linear stochastic VI if the expected matrix is positive semidefinite. We show that the ERM problem and its SSAA problems have minimizers in a compact set and any cluster point of minimizers and stationary points of the SSAA problems is a minimizer and a stationary point of the ERM problem (a.s.). Our examples come from applications involving traffic flow problems. We show that the conditions we impose are satisfied and that the solutions, efficiently generated by the SSAA procedure, have desirable properties.
机译:随机变分不等式(VI)已在工程和经济学中广泛用作一种有效的数学模型,用于处理涉及不确定数据的许多均衡问题。本文为一类随机VI提出了一种新的期望残差最小化(ERM)公式。 ERM公式的目标是Lipschitz连续和半光滑,这有助于我们保证解的存在性和逼近方法的收敛性。我们提出了一种全局收敛的(a.s.)平滑样本平均逼近(SSAA)方法,以最小化残差函数;如果期望矩阵为正半定值,则该最小化问题对于线性随机VI而言是凸的。我们表明,ERM问题及其SSAA问题在紧凑集中具有极小值,而极小值的任何聚类点和SSAA问题的平稳点都是ERM问题的最小化点和平稳点(a.s.)。我们的示例来自涉及交通流问题的应用程序。我们表明,我们施加的条件得到满足,并且由SSAA程序有效生成的解决方案具有理想的属性。

著录项

  • 作者

    Chen, X; Wets, RJ; Zhang, Y;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号